
Mid-Semestral Exam 2009-2010
Complex Analysis

August 25, 2016

Problem 1. Prove or disprove the following:
if f is an entire function and g(z) = f(z̄)(where ā is the complex conjugate of a )then g is
also an entire function.

Proof. Suppose f(z)=u(x,y)+iv(x,y), then g(z)= ũ(x, y)+iṽ(x, y). Where ũ(x, y)=u(x,-y) and
ṽ(x, y) = -v(x,-y).
Now we shall use the Cauchy-Riemann Equations to show that g(z) is an analytic func-
tion.
ũx = ∂u

∂x
(x,-y)=∂v

∂y
(x,-y)=-∂v

∂y
(x,-y)=ṽy

similarly, ũy = ∂u
∂y

(x,-y)= ∂v
∂x

(x,-y)=-{− ∂v
∂x

(x,-y)}=−ṽx
Hence g(z) is an analytic function.

Problem 2. Find all entire functions f such that [f(z)]3 = ez for all z ∈ C.

Proof. [f(z)]3 = ez implies that f(z) 6= 0 for all z ∈ C
from this it follows that 3f ′(z)f(z)2

[f(z)]3
=1 and hence we get f ′(z) = f(z)

3
.

Thus, fn(z) = f(z)
3n

, so at z=0 we have fn(0) = f(0)
3n

= 1
3n

.
Since f is given to be an entire function, f(z)=

∑∞
n=0 anz

n where an = fn(0)
n!

, so from the
above we have an = 1

3nn!
.

Thus, f(z) =
∑∞

n=0
(z/3)n

n!
= e

z
3 .

Thus all the entire functions f such that [f(z)]3 = ez are of the form e
z+2kπi

3 for some k∈
N∪{0}.

Problem 3. If f(z) = z
1+z

find f (U). Is f a conformal equivalence of U onto f(U )?
Hint: use properties of Mobius transformations.

Proof. The inverse of the given f(z) is g(w) = w
1−w . Now, suppose f(z)=w, then z=g(w), i.e.

z = w
1−w . Since z ∈ U, |z| < 1 and hence |w| < |1− w|.
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Let w=x+iy. Then we get from the above inequality that (x2 +y2) < (1−x)2 +y2 which
implies x < 1/2. We also notice that f(0)=0.

Now f(z) being a Moebius transformation will always take connected components to
connected components and hence f(U) will be the region {z ∈ C : Re(z) < 1/2} i.e. the left
half plane with respect to the line x=1/2 in R2

The fact that f is one-one and analytic on U is easy to check and hence f(U) is confor-
mally equivalent to U via f.

Problem 4. Let γ be a continuously differentiable map from [0,1] into C with γ(0) = 1
and γ(1) = i. Evaluate

∫
γ

23− 3z5 + 7z6 + 200z100 dz.

Proof. Let Γ be the closed curve formed by joining the given curve γ and the unit circular
arc from i to 1.
i.e. Γ = γ(2t),∀t ∈ [0, 1]; γ̃(t),∀t ∈ [1, π/2] where γ̃(t) = e

i[π
2
− (t−1)(π/2)

π
2−1

]
. Now since the given

integral is a polynomial and hence an entire function over C we have
∫

Γ
23− 3z5 + 7z6 +

200z100 dz = 0
But,

∫
γ

23−3z5+7z6+200z100 dz. =
∫
γ

23−3z5+7z6+200z100 dz. +
∫
γ̃

23−3z5+7z6+200z100 dz.

Therefore,
∫
γ

23− 3z5 + 7z6 + 200z100 dz. = -
∫
γ̃

23− 3z5 + 7z6 + 200z100 dz.

Now we calculate
∫
γ̃

23−3z5+7z6+200z100 dz. using the relation
∫
γ̃
f(z) dz =

∫ π/2
1/2

f(γ̃(t))γ̃′(t) dt.

Problem 5. Prove that if p is a non-constant polynomial of degree n then {z : |p(z)| < 1}
is a bounded open set with atmost n connected components. Give an example to show
that the number of components can be less than n.

Proof. The boundedness follows from the fact that |p(z)| → ∞ as |z| → ∞ and the second
property follows from the fact that p(z) is continous as it is holomorphic and the given
region say G is the inverse of an open set under p(z).

The main idea lies in the fact that each component of G will atleast have a root of p(z).

Suppose C is a component of G not containing a root of p(z), then p(z) 6= 0 for all z ∈
C and thus 1

p(z)
is holomorphic in C. Now since ∂C ⊂ ∂G and ∂G = {z : |p(z)| = 1}

[Proof: let z be such that|p(z)| = 1, then if there are no sequence {zn} in G which con-
verges to z, then it will violate the Maximum Modulus principle] we have 1

|p(z)| < 1 and
p(z) < 1 by the Maximum Modulus principle, which is a contradiction.

Thus each component of G will atleast have a root of p(z) and hence by the Funda-
mental Theorem of Algebra, G can have atmost n many connected components.

This idea also shows that if we take a polynomial with multiple roots, number of
components of G will be less than n.
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Problem 6. If f is an entire function such that |f(z)| ≥ |z| for all z, prove that f is neces-
sarily a polynomial.

Proof. Since |f(z)| → ∞ as |z| → ∞, f(z) has a pole at infinity, say of order m.
Now,an entire function having a pole at infinity of order m is necessarily a polynomial of
degree m.
This follows from the fact that f has a pole at infinity of order m if f(1/z) has a pole at zero
of order m.
So, we get that f(1/z) =

∑∞
n=−m anz

n, therefore f(z) =
∑∞

n=−m
an
zn

But since f is given to be an entire function, in the above expression we have an = 0 for
n ≥ 1. Thus we get that f(z) is a polynomial.

Problem 7. Let f ∈ H(Ω) and f(z) /∈ (−∞; 0] for all z ∈ Ω.Prove that log |f | is a harmonic
function on Ω.Also prove that the conclusion is true for any f ∈H(Ω) such that f(z) /∈ 0 for
all z ∈ Ω .

Proof. In the slit plane Ω = C − {(−∞; 0]} we have the principal branch of logarithm ,
i.e. log f(z)=ln |f(z)| + i (arg(f(z))) with |arg(f(z))| < π. Thus ln |f(z)| is a harmonic
function since it is the real part of an analytic function log f(z).

For the second part we use the following result from page 65 of Complex Analysis in
One Variable by Raghavan.

Let Ω ⊂ C be a simply connected open set. Suppose that f is nowhere zero on Ω. Then
there exists g ∈H(Ω) such that eg = f .
This actually tells that g which is the branch of logarithm of f(z) is also the primitive of f ′

f

Since it is given that f(z) 6= 0 for all z ∈ Ω the primitive of f ′

f
exists and which is nothing

but log f(z) and hence log f(z)=ln |f(z)| + i (arg(f(z))) is holomorphic on Ω. Then again
ln |f(z)| is harmonic as it is the real part of an analytic function.
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