Mid-Semestral Exam 2009-2010 Complex Analysis

August 25, 2016

Problem 1. Prove or disprove the following:
if f is an entire function and $\mathrm{g}(\mathrm{z})=\overline{f(\bar{z})}$ (where \bar{a} is the complex conjugate of a)then g is also an entire function.

Proof. Suppose $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$, then $\mathrm{g}(\mathrm{z})=\widetilde{u}(x, y)+\mathrm{i} \widetilde{v}(x, y)$. Where $\widetilde{u}(x, y)=\mathrm{u}(\mathrm{x},-\mathrm{y})$ and $\widetilde{v}(x, y)=-\mathrm{v}(\mathrm{x},-\mathrm{y})$.
Now we shall use the Cauchy-Riemann Equations to show that $\mathrm{g}(\mathrm{z})$ is an analytic function.
$\widetilde{u}_{x}=\frac{\partial u}{\partial x}(\mathrm{x},-\mathrm{y})=\frac{\partial v}{\partial y}(\mathrm{x},-\mathrm{y})=-\frac{\partial v}{\partial y}(\mathrm{x},-\mathrm{y})=\widetilde{v}_{y}$
similarly, $\widetilde{u}_{y}=\frac{\partial u}{\partial y}(x,-y)=\frac{\partial v}{\partial x}(x,-y)=-\left\{-\frac{\partial v}{\partial x}(x,-y)\right\}=-\widetilde{v}_{x}$
Hence $g(z)$ is an analytic function.

Problem 2. Find all entire functions f such that $[f(z)]^{3}=e^{z}$ for all $z \in \mathbb{C}$.
Proof. $[f(z)]^{3}=e^{z}$ implies that $f(z) \neq 0$ for all $z \in \mathbb{C}$ from this it follows that $\frac{3 f^{\prime}(z) f(z)^{2}}{[f(z)]^{3}}=1$ and hence we get $f^{\prime}(z)=\frac{f(z)}{3}$.

Thus, $f^{n}(z)=\frac{f(z)}{3^{n}}$, so at $\mathrm{z}=0$ we have $f^{n}(0)=\frac{f(0)}{3^{n}}=\frac{1}{3^{n}}$.
Since f is given to be an entire function, $\mathrm{f}(\mathrm{z})=\sum_{n=0}^{\infty} a_{n} z^{n}$ where $a_{n}=\frac{f^{n}(0)}{n!}$, so from the above we have $a_{n}=\frac{1}{3^{n} n!}$.
Thus, $\mathrm{f}(\mathrm{z})=\sum_{n=0}^{\infty} \frac{(z / 3)^{n}}{n!}=e^{\frac{z}{3}}$.
Thus all the entire functions f such that $[f(z)]^{3}=e^{z}$ are of the form $e^{\frac{z+2 k \pi i}{3}}$ for some $\mathrm{k} \in$ $\mathrm{N} \cup\{0\}$.

Problem 3. If $f(z)=\frac{z}{1+z}$ find $f(U)$. Is f a conformal equivalence of U onto $f(U)$? Hint: use properties of Mobius transformations.

Proof. The inverse of the given $\mathrm{f}(\mathrm{z})$ is $g(w)=\frac{w}{1-w}$. Now, suppose $\mathrm{f}(\mathrm{z})=\mathrm{w}$, then $\mathrm{z}=\mathrm{g}(\mathrm{w})$, i.e. $z=\frac{w}{1-w}$. Since $z \in U,|z|<1$ and hence $|w|<|1-w|$.

Let $\mathrm{w}=\mathrm{x}+\mathrm{i} y$. Then we get from the above inequality that $\left(x^{2}+y^{2}\right)<(1-x)^{2}+y^{2}$ which implies $x<1 / 2$. We also notice that $\mathrm{f}(0)=0$.

Now $f(z)$ being a Moebius transformation will always take connected components to connected components and hence $\mathrm{f}(\mathrm{U})$ will be the region $\{z \in \mathbb{C}: \operatorname{Re}(z)<1 / 2\}$ i.e. the left half plane with respect to the line $x=1 / 2$ in \mathbb{R}^{2}

The fact that f is one-one and analytic on U is easy to check and hence $f(U)$ is conformally equivalent to U via f.

Problem 4. Let γ be a continuously differentiable map from [0,1] into \mathbb{C} with $\gamma(0)=1$ and $\gamma(1)=i$. Evaluate $\int_{\gamma} 23-3 z^{5}+7 z^{6}+200 z^{100} d z$.
Proof. Let Γ be the closed curve formed by joining the given curve γ and the unit circular arc from ito 1 .
i.e. $\Gamma=\gamma(2 t), \forall t \in[0,1] ; \widetilde{\gamma}(t), \forall t \in[1, \pi / 2]$ where $\widetilde{\gamma}(t)=e^{i\left[\frac{\pi}{2}-\frac{(t-1)(\pi / 2)}{\frac{\pi}{2}-1}\right]}$. Now since the given integral is a polynomial and hence an entire function over \mathbb{C} we have $\int_{\Gamma} 23-3 z^{5}+7 z^{6}+$ $200 z^{100} d z=0$
But, $\int_{\gamma} 23-3 z^{5}+7 z^{6}+200 z^{100} d z .=\int_{\gamma} 23-3 z^{5}+7 z^{6}+200 z^{100} d z .+\int_{\tilde{\gamma}} 23-3 z^{5}+7 z^{6}+200 z^{100} d z$. Therefore, $\int_{\gamma} 23-3 z^{5}+7 z^{6}+200 z^{100} d z .=-\int_{\tilde{\gamma}} 23-3 z^{5}+7 z^{6}+200 z^{100} d z$.
Now we calculate $\int_{\widetilde{\gamma}} 23-3 z^{5}+7 z^{6}+200 z^{100} d z$. using the relation $\int_{\tilde{\gamma}} f(z) d z=\int_{1 / 2}^{\pi / 2} f(\widetilde{\gamma}(t)) \widetilde{\gamma}^{\prime}(t) d t$.

Problem 5. Prove that if p is a non-constant polynomial of degree n then $\{z:|p(z)|<1\}$ is a bounded open set with atmost n connected components. Give an example to show that the number of components can be less than n.
Proof. The boundedness follows from the fact that $|p(z)| \rightarrow \infty$ as $|z| \rightarrow \infty$ and the second property follows from the fact that $\mathrm{p}(\mathrm{z})$ is continous as it is holomorphic and the given region say G is the inverse of an open set under $p(z)$.

The main idea lies in the fact that each component of G will atleast have a root of $p(z)$.
Suppose C is a component of G not containing a root of $p(z)$, then $p(z) \neq 0$ for all $\mathrm{z} \in$ C and thus $\frac{1}{p(z)}$ is holomorphic in C. Now since $\partial C \subset \partial G$ and $\partial G=\{z:|p(z)|=1\}$
[Proof: let z be such that $|p(z)|=1$, then if there are no sequence $\left\{z_{n}\right\}$ in G which converges to z , then it will violate the Maximum Modulus principle] we have $\frac{1}{|p(z)|}<1$ and $p(z)<1$ by the Maximum Modulus principle, which is a contradiction.

Thus each component of G will atleast have a root of $p(z)$ and hence by the Fundamental Theorem of Algebra, G can have atmost n many connected components.

This idea also shows that if we take a polynomial with multiple roots, number of components of G will be less than n.

Problem 6. If f is an entire function such that $|f(z)| \geq|z|$ for all z , prove that f is necessarily a polynomial.

Proof. Since $|f(z)| \rightarrow \infty$ as $|z| \rightarrow \infty, \mathrm{f}(\mathrm{z})$ has a pole at infinity, say of order m .
Now,an entire function having a pole at infinity of order m is necessarily a polynomial of degree m.
This follows from the fact that f has a pole at infinity of order m if $f(1 / z)$ has a pole at zero of order m .
So, we get that $\mathrm{f}(1 / \mathrm{z})=\sum_{n=-m}^{\infty} a_{n} z^{n}$, therefore $\mathrm{f}(\mathrm{z})=\sum_{n=-m}^{\infty} \frac{a_{n}}{z^{n}}$
But since f is given to be an entire function, in the above expression we have $a_{n}=0$ for $n \geq 1$. Thus we get that $f(z)$ is a polynomial.

Problem 7. Let $\mathrm{f} \in \mathrm{H}(\Omega)$ and $\mathrm{f}(\mathrm{z}) \notin(-\infty ; 0]$ for all $\mathrm{z} \in \Omega$. Prove that $\log |f|$ is a harmonic function on Ω.Also prove that the conclusion is true for any $f \in H(\Omega)$ such that $f(z) \notin 0$ for all $\mathrm{z} \in \Omega$.

Proof. In the slit plane $\Omega=\mathbb{C}-\{(-\infty ; 0]\}$ we have the principal branch of logarithm, i.e. $\log f(z)=\ln |f(z)|+\mathrm{i}(\arg (f(z)))$ with $|\arg (f(z))|<\pi$. Thus $\ln |f(z)|$ is a harmonic function since it is the real part of an analytic function $\log f(z)$.

For the second part we use the following result from page 65 of Complex Analysis in One Variable by Raghavan.

Let $\Omega \subset \mathbb{C}$ be a simply connected open set. Suppose that f is nowhere zero on Ω. Then there exists $\mathrm{g} \in \mathrm{H}(\Omega)$ such that $e^{g}=f$.
This actually tells that g which is the branch of logarithm of $f(z)$ is also the primitive of $\frac{f^{\prime}}{f}$ Since it is given that $\mathrm{f}(\mathrm{z}) \neq 0$ for all $\mathrm{z} \in \Omega$ the primitive of $\frac{f^{\prime}}{f}$ exists and which is nothing but $\log \mathrm{f}(\mathrm{z})$ and hence $\log f(z)=\ln |f(z)|+\mathrm{i}(\arg (f(z)))$ is holomorphic on Ω. Then again $\ln |f(z)|$ is harmonic as it is the real part of an analytic function.

